پیش‌بینی سرانه مخارج بهداشتی در ایران تا افق 1420 با استفاده از الگوریتم‌های ژنتیک و بهینه‌سازی انبوه ذرات

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری اقتصاد، دانشکده علوم اقتصادی و اداری، دانشگاهلرستان، خرم‌آباد، ایران

2 کارشناسی‌ارشد اقتصاد، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات خوزستان، اهواز، ایران

چکیده

مقدمه: پیش‌بینی روند سرانه مخارج بهداشتی می‌تواند در تعیین بهترین سیاست‌ها برای تأمین مالی و مدیریت هزینه‌های سلامت، مفید و مؤثر باشد. بر این اساس، هدف اصلی این مطالعه پیش‌بینی روند سرانه مخارج بهداشتی در ایران بود.
روش پژوهش: این مقاله با استفاده از مبانی نظری در زمینه تابع مخارج بهداشتی و به‌کارگیری آن با دو ابزار الگوریتم ژنتیک (GA) و الگوریتم بهینه‌سازی انبوه ذرات (PSO)، به شبیه‌سازی تابع سرانه مخارج بهداشتی ایران طی سال‌های 1394-1358 در قالب سه معادله خطی، نمایی و درجه دوم پرداخت و سپس با استفاده از معیارهای انتخاب مدل رقیب، الگوریتم و مدل برتر انتخاب و اقدام به پیش‌بینی میزان سرانه مخارج بهداشتی تا سال 1420 شد. تحلیل داده‌ها نیز به کمک نرم‌افزار MATLAB نسخه R2016b صورت گرفت.
یافته‌ها: نتایج پیش‌بینی نشان‌دهنده آن بود که سرانه مخارج بهداشتی در ایران با شیب افزایشی تا سال 1420 افزایش خواهد یافت. به‌گونه‌ای که میزان این مخارج از مقدار 1081 دلار (بر اساس قیمت‌های ثابت سال 2011) در سال 1394 به میزان 2628 دلار در سال 1420 خواهد رسید (چیزی حدود 2/5 برابر).
نتیجه‌گیری: با توجه به مقادیر پیش‌بینی‌شده سرانه مخارج بهداشتی تا افق 1420، سیاست‌گزاران بخش سلامت بایستی تدابیر لازم را برای تأمین مالی مخارج این بخش اتخاذ کنند.

کلیدواژه‌ها


1- Mohseni M. Medical sociology. 5 ed. 5nd, editor. Tehran: Tahori Publication; 2009. [In Persian]

2- Alizadeh M and Golkhandan, A. Robust determinants of health sector costs in Iran: Bayesian model averaging approach. Journal of Health Care Management, 2017; 7(2): 47-61. [In Persian]

3- Newhouse J. Medical care expenditures; a cross national study, J Hum Resource, 1977; 12: 10-26.

4- Magazzino C and Mele M. The Determinants of health expenditure in Italian regions, International Journal of Economics & Finance, 2012; 4(3): 61-72.

5- Wang Z. The determinants of health expenditures: evidence from US state-level data, Applied Economics, 2009; 41(4), 429-435.

6- Ang J. B. The determinants of health care expenditure in Australia, Applied Economics Letters, 2009; 17(4): 639-644.

7- Bilgel F and Tran KC. The determinants of Canadian provincial health expenditures: evidence from a dynamic panel, 2012; 45(2): 201-212.

8- Fattahi M, Osari A, Sadegi H and Asgharpur H. Effects of air pollution on public spending for health: Comparative developing and developed countries, Journal of Economic Development, 2013; 3(11): 111-132. [In Persian]

9- Rezaei S, Dindar A, Rezapour A. health care expenditures and their determinants: Iran provinces (2006-2011), Journal of Health Administration, 2016; 19(63): 81-90. [In Persian]

10- Jalaei Esfandabadi A, Taleghani F, Mangali H and Aramesh H. Simulation and forecasting of non-oil exports to 1404 horizons, Quarterly journal of Economic Strategy, 2013; 4: 147-166. [In Persian]

11- Holland J H. Adaptation in Natural and Artificial Systems, University of Michigan Press; 1975.

12- Ghanbari A, Khezri M and Azami A. Simulation of oil and gas demand function in Iran's land transport using an algorithmic genetic method, Quarterly Journal of Quantitative Economics, 2008; 4: 157-177. [In Persian]

13- Chakraborty M and Chakraborty UK. An analysis of linear ranking and binary tournament selection in genetic algorithms, Communications and Signal Processing, 1997; 1: 407-411.

14- Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning; 1989.‏

15- Coir DW and Smith AE. Using a neural network as a function evaluator during GA search for reliability optimization, In Proceedings of the Artificial Neural Networks in Engineering, 1995; 5: 369-374.

16- Charbonneau P. An introduction to genetic algorithms for numerical optimization, NCAR Technical Note; 2002: 74.‏

17- Rudolph G. Convergence properties of canonical genetic algorithms, IEEE Transactions on Neural Networks, 1994; 1(5): 96–101.

18- Reeves CR, Scott D and Harrison A. Applying genetic algorithms to container transshipment, Artificial Neural Nets and Genetic Algorithms; 2003: 234-238.

19- Kennedy J and Eberhart R. Particle swarm optimization, Proc. Proceedings of IEEE International Conference on Neural Networks; 1995.

20- Bhmani M, Ghaseminejad A, Karimian A.K and Aramesh H. Simulation of the electric power demand in agricultural sector using the particle swarm algorithm, Journal of Agricultural Economics Research, 2014; 6(2): 1-11. [In Persian]

21- Rasel M and Ardalan A. The future of ageing and its health care costs: a warning for health system, sija, 2007; 2(2): 300-305. [In Persian]

22- Seyedzadehabras S, Delavari M and Babakhani M. The factors affecting on Iran’s health expenditure and forecasting based on dynamic systems model, Hakim Health Sys Res, 2018; 20(4): 240- 250. [In Persian]

23- Chaabouni S and Abednnadher C. Modelling and forecasting of Tunisia’s health expenditures using artificial neural network and ARDL models. Int J Med Sci Public Health, 2013; 2(3): 495-503.

24- Dieleman JL, Campbell M, Chapin A, et al. Future and potential spending on health 2015-40: development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries. Lancet, 2017; 389(10083): 2005-2030.